
A Novel Approach to Real-Time Processing:

Implementing Complex Calculations on GPU

Seyed Ali Salehi Neyshabouri, Mohammad Reza Niknezhad, Ehsan Kamali

Iran University of Science and Technology
University St., Hengam St., Resalat Ave., Tehran, Iran

{nysalehi, mrniknejad, kamali.ehsan}@gmail.com

Abstract - Since the very beginning days of developing
intelligent robots, achieving higher speed in data processing
has been one of the most problematic challenges for
designers. Intelligent robots have always been coupled with
heavy and complex calculations, which are vital for them to
be computed in the least time, achieving the least delay.
Regular processors known as CPUs leave designers with no
option but to replace accurate and expensive algorithms with
inaccurate and easy to compute ones to achieve the ultimate
goal which is real-time processing. This paper suggests a
method to boost data processing speed by executing some
result-independent functions on the GPU. This method
results a dramatic improvement in processing speed,
promising emersion of some powerful but expensive, thus
abandoned algorithms.

I. Introduction

In computer science, real-time computing (RTC), or
"reactive computing", is the study of hardware and
software systems subjected to a "real-time constraint"—
i.e., operational deadlines from event to system response.
Such tasks were executed on CPU which forced
programmers to either ignore maximum accuracy or
utilize fast enough but expensive processors which don’t
solve the problems. Modern GPUs are very efficient at
manipulating computer graphics, and their highly parallel
structure makes them more effective than general-purpose
CPUs for a range of complex algorithms.

This paper aims to use highly parallel structure to speed
up calculation of algorithms used in AI and image
processing. Results of the application of the method on
some algorithms like field evaluation, edge detection, and
potential-field path planner on various CPUs and GPUs
are illustrated.

II. Problem Description

Image-processing and artificial intelligence are some
of complex challenges that robot designers in various
fields encounter. Most of these challenges are
satisfactorily answered, but only in static domains.
Dynamic domains require real-time processing, which due
to the complexity of calculations which such algorithms
are coupled with, is hard to achieve. This problem is so
serious that some advanced AI methods have not yet been
implemented even years after development. To overcome
this difficulty the designers should inevitably utilize very
fast processors or replace the original algorithms with
simplified but less accurate ones. The later is not ideal and
in some cases it even makes the solution impractical.
Using fast processors has proven not to be the satisfying
procedure, even using fastest chips available in the
market.

III. Calculations on GPU using CUDA

Driven by the insatiable market demand for real-time,
high-definition 3D graphics, the programmable Graphic
Processor Unit or GPU has evolved into a highly parallel,
multithreaded, many-core processor with tremendous
computational power and very high memory bandwidth.
In November 2006, nVidia® introduced CUDA™, a
general purpose parallel computing architecture – with a
new parallel programming model and instruction set
architecture – that leverages the parallel compute engine
in nVidia GPUs to solve many complex computational
problems in a more efficient way than on a CPU [9]. In
comparison with CPU, graphic cards have much more
cores each having a separate memory unit which results in
reducing the flow control for a single process.
CUDA comes with a software environment that allows
developer to use C as a high-level programming language.
It lets the programmer to get the desired results from
some heavy and complex tasks much faster and allows
some algorithms to be implemented in real-time which
were almost abandoned due to complexity and the time
required to get reasonable results.

The presented method is to parallelize AI algorithms, so
they could be implemented on GPU using CUDA.

IV. Results

Robocup Small-Size league is an appropriate filed for
testing this method. In this league 2 teams consisting of 5
robots capable of moving with the speed up to 4m/s and a
ball moving at the speed up to 10m/s play in a very
dynamic and adversative field. Real-time processing for a
team playing in such field is vital.

The algorithms descriptions and the results from both
CPU and GPU are followed.

A) Computer Vision

Among the various sensors that can be utilized, one

of the most powerful and inexpensive is through machine
vision, which has its own limits like complexity of some
algorithms used in it such as edge detection. Edge
detection uses relative contrast in nearby pixels to
determine boundaries in an image. Although popular in
traditional machine vision and robotics, it has been
difficult to run this type of processing at real time rates
without specially designed hardware. This is due to the
usual method requiring neighborhood processing of pixels
in order to generate a value [2]. The most popular
methods generally employ linear shift-invariant filters like
Sobel operator [4]. However, they usually result in poor
output and just fulfill minimum requirements.
This paper suggests the implementation of the edge
detection algorithms for all pixels of the image
simultaneously using CUDA. This algorithm can process
a 780*580 image in about 0.34ms which is averagely
1442% faster comparing other implementations in Intel®
OpenCV™.
In computer vision, edge detection and color
segmentation are a good combination, since their
processing advantages are complimentary. Color
segmentation helps define object areas, while edge
detection aids in defining more exact edges and does not
rely on prior classification definitions as color thresholds
do [3].
It is planned to work on determining the ball altitude in
the small-size league as a novel approach by using edge
detection.

Figure 1: Source image (up) vs. image with edge detection and
flood-fill applied (middle) and image combined with color
segmentation (down).

B) Field Evaluation

One of the most important aspects of artificial
intelligence in a small-size league robot is the field
evaluation methods. In these methods each individual
point of the field is evaluated for a specific purpose, for
example to find the best point for receiving a pass from a
teammate possessing the ball (Fig. 2). As explained in [1]

each point of the field is evaluated considering some
parameters like the largest free angle toward the goal.

Figure 2: An example of evaluated field points for receiving
pass from where the ball is located (the orange rectangle down
left). Yellow circles are robots. Brighter points have more value.
The red rectangle has maximum value and is the answer of the
evaluation function.

If the SSL field having the dimensions of 6.05*4.05m is
broken down to 6050*4050 points, implementing passing
evaluation method on the CPU takes about 1500ms as
shown in figure 3. Such processing time is not acceptable
in a field as dynamic as the field of small-size robot.

The first solution that emerges into mind is to breakdown
the field into bigger parts. It is clear that decreasing the
number of points in each dimension by factor of n will
result in processing time to become of the original
time. Thus to make the task executable in the desired time
(1ms) the field should be divided into 67*100 point. Such
allocation has been tested in previous robotic
competitions by our team Immortals and the results were
not satisfactory.

Since evaluation functions for each point of the field are
calculated independently of the other points, they could be
implemented in parallel using CUDA. Executing passing
evaluation method on the GPU with 6050*4050
allocations takes only 43ms (Fig. 3) which is a real-time
evaluation of a high definition allocation (35 times faster
than CPU).

Figure 3: Field evaluation execution time on multiple CPUs and

GPUs.

C) Path Planning

Path planning has always been a challenge for

designers of mobile robots. There are many path planning
methods like random planners, potential fields and A*;
none of which has both satisfying accuracy and high
speed of calculation. The main reason for that is the huge
number of calculation steps which CPU does the
computations serially, based on its architecture, while a
GPU, having numerous cores could compute them
simultaneously and more rapidly. Using CUDA, these
algorithms could be implemented on GPU.
Implementation of two of these methods is explained in
the following sections.

1) Parallel-expanding Rapidly-Exploring Random
Trees (RRT):

Like every other path planner, RRTs suffer from long
execution time. Some developments have been made to
improve performance of this algorithm, like Execution-
Extended RRT [6], but they decrease the efficiency and
accuracy of the path planned by the algorithm in highly
dynamic domains. Although these new algorithms have
slightly reduced the time required for calculation, they
cannot be named real-time path planners yet. For example
ERRT developed by CMDragons in Small-Size league
competitions takes 2 ms, so it takes 10 ms to calculate the
path for all 5 robots [6].
In the present work it is suggested to parallelize the
expansions of this method, with inserting many nodes in
the tree simultaneously. This method is not efficient
enough in initial steps; but it reveals its capabilities as size
of the tree increases.

The results of the tests show some improvements in
calculation time. Executing an RRT plan in a regular
small size game using CUDA takes at most 0.61ms.

2) Potential Field Planning

In [7] an approach is proposed for robot path

planning that consists of incrementally building a graph
connecting the local minima of a potential field defined in
the robot’s configuration space and concurrently
searching this graph until a goal configuration is attained.

For every expansion step of the graph, all neighboring
points should be evaluated. This paper suggests to
evaluate all points of the field simultaneously on GPU
using CUDA, and to determine local minima of every step
by CPU. The experiments show a huge improvement in
results as shown in figure 4, especially in multi-agent
cases, because same evaluation results would be reused
for all agents.

Figure 4: Potential field execution time on multiple CPUs and

GPUs.

D) Physic-Based Behavioral Control

Separately implementing higher level tactics and

lower level navigation control can lead to tactics which do
not fully utilize the robot’s dynamic actuation abilities. It
can furthermore create the problem of the navigational
code breaking the constraints of the higher level tactical
goals when avoiding obstacles [1]. For example when a
robot is executing “shoot on goal” skill [8], it shoots the
ball to the center of the largest free angle toward the goal
from its position. Doing so may not be necessarily the
best solution. In some cases dribbling a defender might
put the robot in a much better situation, or shooting the
ball toward a defender might cause the ball to deflect
toward the goal. In the method presented by Zickler [1]

this problem is almost solved. This method finds the best
solution by simulating different ways to run a
probabilistically modeled play or skill [8] by a rigid-body-
simulator like nVidia PhysX™.
The main difficulty of this approach is its low speed
which has not allowed it to be implemented in real-time
even 2 years after its development. As mentioned in [1] it
takes 1 to 30 seconds to calculate the path, depending on
the size of the tree. It should be considered that the tree
which takes 1 second to be computed consists of 1000
nodes, and its average success rate in an example run by
the authors is less than that of the linear tactic. In fact a
tree with reliable success rate should have at least 10,000
nodes taking about 4 seconds to be calculated.
One of the main reasons for its high time consumption is
that the computations of physics engine requires a lot of
time. This problem could be easily resolved by using
PPUs (Physics Processing Unit). It would resolve half of
the algorithm’s time-consumption problem [1] and the
other half could be solved by using CUDA with parallel-
Expanding RRT mentioned in the previous section.
This method is still under development and furthermore,
the question how to re-use the previously computed result
during re-planning needs to be answered.

V. Conclusion

A method is presented to implement parallel
calculations of AI, image processing, and path planning
on GPU using CUDA software introduced by nVidia.
This method dramatically + speed, and is highly capable
of calculating such computations much faster in
comparison with CPU.
Apparently this approach enables designers to experience
a real-time image processing with sufficient accuracy,
evaluate points of the field with a reasonable allocation
and implement expensive but accurate path-planning
algorithms. It generally seems to solve some of the old
problems of real-time processing
It is planned to work on the implementation and
optimization of more image processing and AI tasks on
GPU to form a general library to face the needs of robot
designers to achieve a real-time processing ability.

References

[1] Zickler, S., Veloso, M. Playing Creative Soccer:
Randomized Behavioral Kinodynamic Planning of Robot
Tactics, Pennsylvania: Carnegie Mellon University, 2008

[2] Bruce, J. Real-time Machine Vision Perception and
Prediction, Pennsylvania: Carnegie Mellon University, May
2000

[3] Marr. D. Vision: A Computational Investigation into the
Human Representation and Processing of Visual Information.
W. H. Reeman and Company, San Francisco, 1982

[4] Jain R., Kasturi R., and Schunck, B.G. Machine Vision.
McGraw-Hill, 1995

[5] Zickler, S. Bruce, J. Biswas, J. Licitra, M. and Veloso, M.
CMDragons 2009 Extended Team Description, Pennsylvania:
Carnegie Mellon University, 2009

[6] Bruce, J. and Veloso, M. Real-Time Randomized Path
Planning For Robot Navigation, Pennsylvania: Carnegie Mellon
University, 2008

[7] Barraquand, J. Langlois, B. and Latombe, J. Numerical
Potential Field Techniques for Robot Path Planning,
Pennsylvania: Carnegie Mellon University, 1992

[8] Browning, B. Bruce, J. Bowling, M. and Veloso, M. STP:
Skills tactics and plans for multi-robot control in adversarial
environments. In: Journal of System and Control Engineering,
2005

[9] nVidia web page: http://www.nvidia.com

